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HPC Developments
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Advances in Computation

• The graphics Processing Unit (GPU) is repurposed as General-
Purpose GPUs (GPGPUs) and used for computing. 

• Slower than CPUs but more than makes up for it with sheer
volume, i.e. consists of very many simple cores

– High throughput computing-oriented architecture 

– Use massive parallelism by executing a lot of concurrent threads

– Handle an ever increasing amount of multiple instruction threads

– CPUs instead typically execute a single long thread as fast as 
possible

• Simplicity leads to leass power consumption

• Many-core GPUs are already used in 
large clusters and within massively 
parallel supercomputers

[1] Distributed & Cloud Computing Book
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• GPUs accelerate computing thru massive parallelism, with thousands of threads.

• GPUs are designed to compute a large number of floating point operations in 
parallel

• GPU accelerator architecture example - NVIDIA card
– GPUs can have 256 cores on one single GPU chip (NVIDIA TEGRA X1)

– Each core can work with eight threads of instructions

– GPU is able to concurrently execute 256 * 8 = 2048 threads

– Interaction and thus major (bandwidth) 
bottleneck between CPU and GPU 
is via memory interactions

– E.g. applications
that use matrix –
vector multiplication

– (other well known accelerators & many-core processors are e.g. Intel Xeon Phi run 
‘CPU’ applications easier)

Advances in Computation: GPGPU Acceleration

[1] Distributed & Cloud Computing Book
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Advances in Computation: FPGA Acceleration

• Recent introduction of hardware advances with

Field Programmable Gate Arrays (FPGA)

• Have the potential to outperform GPUs with less

energy requirements. Hardware is faster than

software.

• Not enough to only have fast hardware

- Needs easy code development

- Library support

[2] Field Programmable Gate Array
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Deep Learning – Tools of the Trade
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Deep Learning – Tools of the Trade

The top 5 mentions on arXiv.org (01/18), many more exist.

Free and Open Source (FOSS) frameworks, libraries and 

extensions.

Mostly used with Python, a major contributer to its growing

popularity.

Initiated and maintained by a mixture of both academia

and industry
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Deep Learning – Tools of the Trade
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Keras with Tensorflow Backend – GPGPU Support

[4] Tensorflow Deep Learning 
Framework

[5] A Tour of Tensorflow

• Keras is a high-level deep learning library implemented in Python that works

on top of existing other rather low-level deep learning frameworks like 

Tensorflow, CNTK, or Theano

• The key idea behind the Keras tool is to enable faster experimentation with

deep networks

• Created deep learning models run seamlessly on CPU and GPU via low-level 

frameworks

[3] Keras Python Deep Learning 
Library



HPC for Big Remote Sensing Data Analytics (Convolutional Neural Networks) 11

Keras with Tensorflow Backend – GPGPU Support

[4] Tensorflow Deep Learning 
Framework

[5] A Tour of Tensorflow

• Tensorflow is an open source library for deep learning models using a flow graph

approach

• Tensorflow nodes model mathematical operations and graph edges between the

nodes are so-called tensors (also known as multi-dimensional arrays)

• The Tensorflow tool supports the use of CPUs and GPUs (much more faster than

CPUs)

• Tensorflow work with the high-level deep learning tool Keras in order to create models

fast

[3] Keras Python Deep Learning 
Library
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Convolutional Neural Networks
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• Approach: Prepare data before

– Classical Machine Learning

– Feature engineering

– Dimensionality reduction techniques

– Low number of layers (many layers computationally infeasible in the past)

– Very succesful for speech recognitition (‘state-of-the-art in your phone‘)

Artificial Neural Network – Feature Engineering & Layers

(Perceptron model: designed after human brain neuron) (Artificial neural network two layer feed – forward)
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Deep Learning Architectures

Deep Neural Network (DNN)
‘Shallow ANN‘ approach with many hidden layers between
input/output

Convolutional Neural Network (CNN, sometimes ConvNet)
Connectivity pattern between neurons inspired by the visual cortex

Recurrent Neural Network (RNN)
‘ANN‘ but connections form a directed cycle; state and temporal 
behaviour

Deep Reinforcement Learning (DRN)
Algorithms driven by positive and negative rewards
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Deep Neural Networks (DNNs)

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville ‘Deep Learning‘
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Convolutinal Neural Networks

• Inspired by connectivity patterns between neurons in the animal
visual cortex.

• Usually built with three types of layers:
- Convolution layers using kernels
- Pooling layers (downsampling)
- Fully connected layers (classification vote)

[7] Azoft, Fully convolutional Neural Network
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CNNs – Putting it all together

[8] Convolutional Neural Networks (CNNs / ConvNets)
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• Approach: Learn Features

– Classical Machine Learning

– (Powerful computing evolved)

– Deep (Feature) Learning  

– Very succesful for image recognition and other emerging areas

– Assumption: data was generated by the interactions of many different factors on different 
levels (i.e. form a hierarchical representation)

– Organize factors into multiple levels, corresponding to different levels 
of abstraction or composition(i.e. first layers do some kind of filtering)

– Challenge: Different learning architectures: varying numbers of layers, layer sizes & types 
used to provide different amounts of abstraction

Feature Learning & More Smart Layers

(Example: Parcellation
of cytoarchitectonic

cortical regions
in the human brain)
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• Traditional machine learning applied feature engineering before modeling

• Feature engineering requires expert knowledge, is time-consuming and a often long
manual process, requires often 90% of the time in applications, and is sometimes even
problem-specific

• Deep Learning enables feature learning promising a massive time advancement

Deep Learning – Feature Learning Benefits

[9] H. Lee et al.
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JURECA HPC System at JSC – GPGPUs

• Characteristics

– Login nodes with 256 GB memory per node

– 45,216 CPU cores

– 1.8 (CPU) + 0.44 (GPU)  Petaflop/s peak performance

– Two Intel Xeon E5-2680 v3 Haswell

CPUs per node: 2 x 12 cores, 2.5 GhZ

– 75 compute nodes equipped with two 

NVIDIA K80 GPUs (2 x 4992 CUDA cores)

• Architecture & Network

– Based on T-Platforms V-class server architecture

– Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology

– 100 GiB per second storage connection to JUST

[10] JURECA HPC System

HPC
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Deep Learning – Scaling Example on JURECA HPC System

• Open source tool Horovod, which uses MPI, enables
distributed deep learning with TensorFlow / Keras 

• Machine & Deep Learning: speed-up is just secondary
goal after 1st goal accuracy

• Speed-up & parallelization good for faster
hyperparameter tuning, training, inference

• Third goal is to avoid much feature engineering through
‘feature learning‘ 

• Simple Image Benchmark on JURECA 
– 1.2 mil. images with 224 x 224 pixels

(absolute number of images per second and relative speedup
normalized to 1 GPU are given)

(setup: TensorFlow 1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, MVAPICH-2.2-GDR)

[11] A. Sergeev, M. Del Balso,’Horovod’, 2018
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Practicals
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Indian Pines Dataset – Revisited

• Crop of 1417 x 617 pixels (~600MB)

• No bands and classes were discarded

– 220 bands and 58 classes

[12] J. Lange, G. Cavallaro, M. Riedel, et al. , IGARSS 2018
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Experimental Setup - 3D Convolutional Neural Network

(583962 trainable parameters)

• Designed to perform pixelwise classification of hyperspectral images.

• Input: spatial-spectral tensors of size [w,w,c] 

– w window size,  c number of spectral bands

• Exploits spectral information and spatial correlation between neighboring pixels

– Predict the center pixel

[12] J. Lange, G. Cavallaro, M. Riedel, et al. , IGARSS 2018
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Python Code Specifications

• Software packages used for the realization of the CNNs

– Python/3.6.5

– Keras 2.2.0 on top of the TensorFlow 1.8.0 compute backend

• Source code repository: https://github.com/Markus-Goetz/cluster-sampling
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First Step – Navigate to the Folder 3dcnn

• $ cd ~/igarss_tutorial/3dcnn

• $ ls
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Second Step – Training and Test Set Generation

• $ module restore igarss_tutorial

• $ python /homea/hpclab/train001/tools/3dcnn/data_generator.py -f 0.1 
-s random -c 1 ~/igarss_tutorial/3dcnn/indian_pines.hdf5

-f [0.1, 0.3, 0.6, 0.9] : train set fraction 
-s [random, size, stddev] : sampling mode
-c : number of data sets to be generated
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Third Step: Submit Job Script for Training

#!/bin/bash -x

#SBATCH--job-name=train_3dcnn

#SBATCH--output=train_3dcnn_out.%j

#SBATCH--error=train_3dcnn_err.%j

#SBATCH--mail-user=your_email

#SBATCH--mail-type=ALL

#SBATCH--partition=gpus

#SBATCH--gres=gpu:1

#SBATCH--time=06:00:00

#SBATCH--nodes=1

#SBATCH--ntasks=1

#SBATCH--reservation=deep_learning

### load modules

module restore igarss_gpu

### submit

python /homea/hpclab/train001/tools/3dcnn/spectral_cnn.py -g -t -s 0 -w 9 -b 50 -e 400 
--model "indian_pines_random_0.1_0_model.h5" --train-history "indian_pines_random_0.1_0_train.csv“

--test-history "indian_pines_random_0.1_0_test.csv" --results "indian_pines_random_0.1_0_results.csv" 

indian_pines.hdf5 indian_pines_random_0.1_0.hdf5

(ReservationName=igarss-gpu
StartTime=2018-07-22T12:45:00 EndTime=2018-07-22T18:15:00) 
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Outputs

$ vi Indian_pines_random_0.1_0_results.csv
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